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The general incompressible flow uQ(x),  quadratic in the space coordinates, and 
satisfying the condition uQ.n = 0 on a sphere r = 1, is considered. It is shown that 
this flow may be decomposed into the sum of three ingredients - a poloidal flow of 
Hill's vortex structure, a quasi-rigid rotation, and a twist ingredient involving two 
parameters, the complete flow uQ(x) then involving essentially seven independent 
parameters. The flow, being quadratic, is a Stokes flow in the sphere. 

The streamline structure of the general flow is investigated, and the results 
illustrated with reference to a particular sub-family of ' stretch-twist-fold ' (STF) 
flows that arise naturally in dynamo theory. When the flow is a small perturbation 
of a flow u,(x) with closed streamlines, the particle paths are constrained near 
surfaces defined by an 'adiabatic invariant ' associated with the perturbation field. 
When the flow u1 is dominated by its twist ingredient, the particles can migrate from 
one such surface to another, a phenomenon that is clearly evident in the computation 
of Poincare' sections for the STF flow, and that we describe as ' trans-adiabatic drift '. 
The migration occurs when the particles pass a neighbourhood of saddle points of the 
flow on r = 1, and leads to chaos in the streamline pattern in much the same way as 
the chaos that occurs near heteroclinic orbits of low-order dynamical systems. 

The flow is believed to be the first example of a steady Stokes flow in a bounded 
region exhibiting chaotic streamlines. 

1. Introduction 
Study of the kinematics of fluid flow normally begins with analysis of the velocity 

field u(x )  in the neighbourhood of a point 0 (see, for example, Batchelor 1967, $2.3). 
Taking origin at 0, the Taylor series of ui(x) has the form 

(1.1) uc(x) = a, + bsj XI + C85k xf %k + . . . , 

where 

Study of the linear term b, x3: shows that locally the relative motion consists of three 
parts : spherically symmetric dilatation associated with the trace b,, (zero for 
incompressible flow), irrotational strain associated with the symmetric part of 
b, -gif bk, ,  and quasi-rigid rotation associated with the antisymmetric part of b,. 

We shall in this paper consider some effects associated with the quadratic term 

7 On leave of absence from the Institute of Geophysics, University of Warsaw, Poland. 
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c i jkx jxk  in the expansion (1 .1) .  Most important among these is that, whereas the 
streamlines of the linear approximation 

ut  = a,+biixi (1.3) 

are in general unbounded (the only exception being when a = 0 and bij = -bji, when 
they are circles), the streamlines of the quadratic approximation 

(1.4) up = ai + b, x, + cijk xi xk 
may, for a wide choice of a,, b,,, C i j k ,  be contained within a bounded region. We shall 
in fact find that there is, apart from an arbitrary multiplicative constant, a seven- 
parameter family of flows of the form (1.4) satisfying the incompressibility condition 

V * u Q  = 0 (1.5) 

x . u Q = O  on T =  1, (1.6) 

and the condition of zero normal velocity on a sphere which we may assume to have 
unit radius : 

where r2 = x, x. 
Boundedness of the streamlines within the sphere r < 1 does not of course imply 

that these streamlines are closed curves, nor even that they lie on a family of surfaces 
within the sphere. They may exhibit the phenomenon of chaotic wandering that has 
been found for the particle paths of certain time-periodic two-dimensional flows by 
Aref (1984), Aref & Balachandar (1986) and Chaiken et al. (1986, 1987), and for the 
streamlines of certain space-periodic, steady, flows (the ‘ ABC ’-flows) by HBnon 
(1966) and Dombre et al. (1986). We shall indeed find that the general quadratic flow 
of the form (1.4) satisfying (1.5) and (1.6) does have chaotic streamlines in a t  least 
part of the spherical domain, with corresponding implications for the spread of any 
scalar field convected by such a flow, and for the spread and intensification of any 
vector field convected and distorted by the flow. 

It was in fact in this latter context that  a particular quadratic flow was devised 
(Moffatt & Proctor 1985) to represent the stretch-twist-fold (STF) action that is 
believed to be most conducive to so-called ‘fast dynamo action’ in magneto- 
hydrodynamics (see Vainshtein & Zel’dovich 1972 ; Zel’dovich, Ruzmaikin & Sokolov 
1983, chap. 7) .  This flow suffered from the undesirable property of unbounded 
streamlines, a defect that  has been remedied by Bajer (1989) by the simple expedient 
of adding a potential flow V Y,  with Y chosen so that both the conditions (1.5) and 
(1.6) are satisfied ; this yields a two-parameter family of flows, namely 

(1.7) 

where the parameters 01 and P are related to the ratios of intensities of the stretch, 
twist and fold ingredients of the flow. It is easily seen that this flow is a particular 
example of the class (1.4), and that it satisfies the conditions (1.5) and (1.6). We have 
subjected this flow to detailed analytical and numerical investigation, and the results 
are illustrative of features that may be expected in the general case. 

Although the present study is primarily kinematic in character, we may note a t  
the outset that every flow of the form (1.4) is a solution of the Stokes equation 

(UZ- 8 ~ 9 , 1  1 ~ ’  + 3y2 + z2 + PXX - 3, - 015 + 2yz - PxY), USTF = 

V2UQ = V p  (1.8) 

V2WQ = 0. (1.9) 

with p = 2cijjx,. By the same token, the vorticity wQ = V h uQ is a linear function of 
x and satisfies 
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This means that the flow (1.4) can, in principle, be realized as the unique Stokes flow 
of a viscous fluid in any domain D,  provided uQ is prescribed in the form (1.4) on the 
boundary 3D of the domain. We shall show, in $2 below, how the most general 
quadratic flow can (in principle) be realized when D is a sphere. 

We should observe also that, although the terminology adopted in this paper is 
appropriate to the velocity in an incompressible fluid, the results are equally relevant 
to the problem of magnetic field structure B(x)  in a plasma contained in a domain 
bounded by a perfect conductor on which B - n  = 0. Any flow of the form (1.4) 
satisfying (1.5) and (1.6) can equally be interpreted as a magnetic field BQ(x)  (not, 
in general, a magnetostatic equilibrium) in a spherical domain (a ‘spheromak ’). 
From this point of view, we may easily find topologically equivalent fields within 
ellipsoidal domains (‘ ellipsoidomaks ’ 1 ) .  For consider the volume-preserving mapping 
x --f X, where 

with s1 s2 s, = 1, which takes the sphere x; + xi + x; = 1 to the ellipsoid 

x, = SIX1, x ,  = s2x2, x,  = s3x3, (1.10) 

x; x2 xi- -+>+- - 1, 
s; s; s; 

and which, under a frozen field distortion, converts a field @(x) to the form 

(1.11) 

(1.12) 

i.e. BF(X) = s,BFl(x), etc. If q i ( x )  is quadratic in x of the form (1.4), then BP(X) 
is quadratic in X; in fact from (1.12) 

B?(X) = S ~ j ( a i + b i k a k m X m + C j k l  ukm u l n X m X n ) r  (1.13) 

(su)= (: s2 o ) ,  (aij)= (? 2 1  I). -1 (1.14) 

Reinterpreting (1.13) as a velocity field, we have a means of determining a large 
family of Stokes flows within the ellipsoidal boundary (1 .11) .  Of course, more general 
mappings x + X ( x )  will yield, via the Cauchy transformation (1.12), fields, and so 
flows, within domains that are arbitrary distortions of a sphere, but these will not be 
quadratic flows unless the mapping is linear. 

In  the following section, we obtain a complete classification of flows of the form 
(1.4) satisfying (1.5) and (1.6), and in $3 we describe the surface streamline topology 
of these flows on T = 1.  In $54 and 5 ,  we consider the question of integrability of the 

(1.15) 
third-order dynamical system 

and we show that the general quadratic flow can be expressed in different ways as the 
sum of two fields, each of which has closed streamlines within the sphere. This type 
of decomposition suggests an approach for analysis of the dynamical system (1.15), 
in terms of adiabatic invariants whose determination is essential to an  understanding 
of the structure of Poinear6 sections of the flow. The general technique is described 
in $6, and its application to the STF flow (1.7) is described in $7 .  The phenomenon 
of ‘ trans-adiabatic drift ’ whereby fluid particles can migrate from one adiabatic 
invariant surface to another, is identified and explained. Finally the results are 
summarized in $8. 

where 0 0  0 

0 0 s, 

d x  
dt 
- = uQ(x) ,  
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2. Classification of quadratic flows in a sphere 
Let us first rewrite (1.4) in the form 

uQ(x)  = U(x)  + V ( x )  + W ( x ) ,  

where U i ( x )  = ui(l -2r2) + ( a - x )  xl, 

V,(X) = bfjxj, 

K(x) = E i j k q X k ,  

and where E(jk = Cijk + 2ai 63, + i(aj 6th + a k  843) = Eikj .  

It may be easily verified that U(x)  satisfies 

V - U = O  and U - x = O  on r = 1 ,  

i.e. U ( x )  represents an incompressible flow in a sphere. Moreover, this flow is 
evidently axisymmetric about an axis through the centre of the sphere in the 
direction of the vector a. If 0, is the polar angle measured from this axis, then the 
Stokes stream function of this flow is given by 

@(r,  19,) = +r2( 1 - r 2 )  sin2 O,, (2.7) 

whose streamlines are shown in figure 1. This is the (unique) Stokes flow that is 
‘driven’ by a tangential velocity distribution U, = asinO, on r = 1 .  It is the flow 
inside a buoyant spherical droplet (relative to its centre) rising a t  low Reynolds 
number in a viscous fluid (Batchelor 1967, p. 237). It is also the flow inside Hill’s 
spherical vortex (Batchelor 1967, p. 526). We shall refer to U ( x )  as the poloidal 
ingredient of the flow uQ(x) .  

Consider now the terms V and W of (2.1); since these are respectively linear and 
quadratic in xi, they must separately satisfy conditions derived from (1.5) and (1.6), 
namely 

V - V = O ,  V . x = O  on r =  1, (2.8) 

V . W = O ,  W . x = O  on r = l .  (2.9) 

V(X) = A x, (2.10) 

It is easily shown that the only flow V of the form (2.3) satisfying (2.8) is the quasi- 
rigid rotation 

with angular velocity af = -iei5k bjk.  
Now W .  x = Ei5k xi xi xk = r3F(B, 97) for some function F(O, 97) of the spherical polar 

angles ( 0 , ~ ) ;  and from (2.9), F(O,q)  = 0. Hence Wax = 0 on every sphere r = const., 
i.e. W(x)  is a toroidal field expressible in the form 

W =  v A ( x T ( x ) )  = -x  A VT (2.11) 

for some scalar field T ( x )  (see for example Moffatt 1978, 32.2). Since W is 
homogeneous quadratic in x, T can be chosen quadratic and homogeneous also, i.e. 

T = qjxix3 (2.12) 

€or some symmetric matrix q5. Each term of this quadratic form yields a 
corresponding flow. For example, the flow corresponding to T,,x2 is 

W,,(X) = - X A V(T,, X 2 )  = 2T,,(O, -xZ, XTJ). (2.13) 

This is a rotation about the x-axis with angular velocity 2T1, z, linear in x ;  i.e. W,,(x) 
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FIQURE 1. Streamlines $(r,O,) = const. of the flow (2.7) in the sphere r < 1. 

is a twist Jlow with rate of twist 2T1, about the x-axis. Similarly for the terms T,, y2  and 
E3 22.  

The off-diagonal term 2T2, yz yields the flow 

K3(X)  = - X  A v ( 2 q 3 y Z )  = 2 T , 3 ( 2 2 - ~ 2 , X y ,  -xz), (2.14) 

whose streamlines are the intersections of hyperbolic cylinder surfaces yz  = const. 
with spheres r = const. 

Let us choose the principal axes of Ti, as axes Oxyz, and let T(I), T(,) ,  T(3) be the 

(2 .15)  
eigenvalues of Ti, ; then 

w-4 = (hyz ,pzx,  V Z Y ) ,  (2.16) and correspondingly 

where h = 2(T(2 ) -T(3 ) ) ,  v = 2 ( T ( 1 ) - T ( 2 ) ) ,  so that 

T = T(1)~2 + T(Wy2 + T(3)z2, 

p = 2 ( F 3 ) - T ( I ) ) ,  

h + p + v  = 0. (2.17) 

Note that we may assume that T(l), F2) and T(3) are all strictly positive, since we may 
add to T any multiple of r2 = x2+ y 2 + z 2  without changing W (since x A V(?) = 0). 
We may assume further, ignoring exceptional cases, that T(') > T(2) > T(3),  so that h 
and v are positive, and p = - ( A + v )  is negative. Then 

W(X) = h(yz ,  -222, 0) + v(0,  -zx, x y ) ,  (2.18) 

a superposition of two twists about the z-axis and the x-axis. We describe h and v as 
the principal rates of twist, and W(x)  as the twist ingredient of the flow. 

To summarize: we now have the genera! field uQ(x) in the form 

U Q ( X )  = a( 1 - 2 ~ ' )  + (a X) X + 0 A X + (hyz ,  pzx,  Vxy), (2 .19)  

with h + p  + v = 0. There are eight independent parameters in the specification of the 
flow, namely 

Any one of these may be normalized to unity, leaving essentially seven parameters 
determining the flow structure. 

a,, a,, a,, a,, Q,, a,, A, v.  ( 2  20) 
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FIQURE 2. A thought-experiment whereby the Stokes flow (2.19) may be realized: a buoyant 
spherical droplet rises at  low Reynolds number in a viscous fluid ; the droplet is brought to rest by 
the downward motion of the corotating discs AA, which also generate the quasi-rigid rotation a ;  
a twist  ingredient is provided by discs BB counter-rotating about the x-axis; a second twist 
ingredient may be generated by similar discs counter-rotating about the y-axis. 

The general toroidal flow V+ W may in principle be realized by a suitable 
distribution of rotating discs in the fluid. First, we place counter-rotating discs a t  
opposite ends of two diameters to provide the twist flows parameterized by A and v ;  
then we place corotating discs to provide the quasi-rigid rotation Q. If a buoyant 
spherical droplet rises a t  low Reynolds number through this apparatus, then a t  the 
moment a t  which it passes through the centre, the velocity within i t  is given by 
(2.19). Alternatively, the corotating discs may be moved downwards to keep the 
droplet in fixed position, as indicated schematically for a particular case in figure 2. 

3. Surface streamline topology 
Since u Q - x  = 0 on r = 1, the flow is tangential on the unit sphere. Regarded as a 

surface flow, its surface divergence V,.uQ is positive on the hemisphere where 
a . x  > 0 (since there the poloidal ingredient of the flow approaches the surface from 
within and spreads out upon i t )  and negative on the hemisphere where a - x  < 0. 

Consider first just the twist flow W ,  which has zero surface divergence. Its 
streamlines on 7 = 1 are given by T = const., i.e. they are the intersections of the 
family of ellipsoids, 

T(')x2 + !P2)y2 + T(3)~2 = const., 

with the unit sphere. Figure 3(a)  shows the situation when, as assumed above, 
T(l) > T@) > T(3) ,  so that A, v > 0,p  < 0. There are four elliptic (or 'O-type') 
stagnation points where the x- and z-axes intersect the sphere, and two hyperbolic 
(or 'X-type') stagnation points where the y-axis intersects the sphere. Note that if 
we assign an index (or rotation number) + 1 to each O-type stagnation point, and - 1 
to each X-type stagnation point, then the sum of the six indices is +2 ,  the Euler 

(3.1) 
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FIGURE 3. (a) Streamlines T = const. (equation (3.1)) on the unit sphere; !P = 1.54, T@) = 0, 
!Pa) = -4.04, D = 0. (b) Surface streamlines when JZ =!= 0, given by intersection of displaced 
ellipsoids (3.2) with the sphere r = 1; D = (0,4,0). On the left is the construction described in 
the text; on the right are the streamlines in Mercator's projection. (z = sinesin#, y = cos0, 
z = sin 0 cos 6.) 

characteristic (and a topological invariant) for the sphere (see, for example, Amol'd 
1973, p. 260). 

The quasi-rigid rotation V ( x )  = 12 A x = V h [x(12-x)] is of course also toroidal, 
and the composite flow V+ W has surface streamlines given by the intersections of 
the ' displaced ' ellipsoids : 

T, = !Z'%* + T(2)y2 + F 3 ) z 2  + B - x = const. (3.2) 
12 FLM 212 
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FIQ .URE 4. 

0 7 ”  
c 

0 

I 

P 

correspond to the triple intersections identified by 0 .  

Curves on which the Cartesian components u, v and w, vanish on r = 1 ; stagnation points 

with the sphere r = 1, the centre of these displaced ellipsoids being at the point 

(3.3) 

From a purely geometric point of view, this is equivalent to displacement of the 
sphere r = 1 relative to the ellipsoids through -Xn. Again the situation is easily 
visualized as in figure 3(6). Evidently if we increase If21 keeping the direction of 51 
fixed, the X-type and 0-type stagnation points disappear in pairs when in effect the 
rotation flow V dominates over the twist flow W ,  finally leaving just two 0-type 
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B = Q  

x 

q = - x  0 I[ 

FIGURE 5. Surface streamline pattern for STF flow (1.7) with u = - 1, /3 = 0.25. 
There are four spirals, and two saddles (at B = 0, K). 

stagnation points, as for a quasi-rigid rotation alone. At each stage, the sum of the 
indices of the stagnation points remains equal to +2,  as it must. 

Superposition of the poloidal ingredient U ( x )  now complicates the situation 
further, particularly through the introduction of the surface divergence referred to 
above. This converts 0-type neutral points to ‘spirals ’, converging or diverging 
according as they are on the hemispheres where a - x  < 0 or > 0 respectively. 

The stagnation points may be located by evaluating the Cartesian components 
u(O,cp),v(8,cp),w(O,cp) as functions of 8 and IJJ on r = 1,  and plotting the curves u = 
0, v = 0, w = 0. The stagnation points are the points where all three curves intersect. 
(Note that, except a t  points on the three equators 8 = in, IJJ = 0, n, and cp = in, $n, an 
intersection of two of the curves implies a triple intersection since u - n  = 0.) Figure 
4 shows three fairly typical situations, in which two, four and six stagnation points 
are located. We have not found any values of the parameters that give eight 
stagnation points, although this is not excluded on topological grounds. 

Figure 5 shows the actual surface streamlines for the STF flow (1.7), with a: = - 1 ,  
B = 0.25. Four spirals are evident, and there are two saddles a t  the poles, 8 = 0, 
e = n .  

12-2 
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4. Streamline helicity 

of the flow uQ by 
Let AQ(x)  be a vector potential for uQ(x) ; then we may define the streamline helicity 

Hs  = < uQ. AQ dV, (4.1) 

a quantity that is independent of the gauge of AQ by virtue of (1.6). H ,  provides a 
measure of the net streamline linkage within the sphere (Moffatt 1969) and is 
therefore of some relevance for what follows. Note that H s  is different from the usual 
helicity H of a flow defined by 

H = I D u . o d V ,  (4.2) 

where o = V A u ;  H provides a measure of the degree of linkage of vortex lines 
within D provided w - n  = 0 on 8D. H is not relevant in the present context, but H ,  
is. (Note that Hs is invariant under frozen field distortions of the type (1.12) with BQ 
replaced by uQ.) 

In order to calculate H,, note first that the decomposition of AQ corresponding to 
the decomposition (2.1) is 

AQ = A,@) +A,@)  + A3(x) ,  (4.3) 

where A , ( x )  = S(a A X )  (1-r2), (4.4) 

A,(x)  = & ( ~ . X ) X - ~ T ~ ] ,  (4.5) 

A,(x)  = x ( T ( % ~  + !P2)y2 + T(,)z2).  (4.6) 

Now JU.A,dV = 0, since U S A ,  vanishes identically, and the integration is 
throughout a sphere ; this is of course consistent with the fact that the streamlines 
of U are closed curves which are unlinked. Similarly, the streamlines of V+ W are 
closed curves on spheres r = const. and are therefore also unlinked; hence 
J( V +  W). (A,+ A3)dV = 0, as may be verified by explicit calculation. Moreover 
U .  A ,  is an odd function of ( x ,  y, z )  so that 

(4.7) 

also ; in this case, the streamlines of U and W a r e  linked, but positive linkages cancel 
negative linkages. This then leaves 

n 

H ,  = J ( U S A , +  V-AJdV = 2 U.A,dV J 
Substituting from (2.2) and (4.5), and evaluating the integral, we find 

(4.9) 

Non-zero streamline helicity corresponds to the evident linkage of the streamlines of 
U and V when n - a  4 0. 

This situation is most easily visualized when sd is parallel to a so that the 
streamlines of U+ V then lie on the family of nested tori 

(4.10) 

where $(r,O,) is the Stokes stream function (2.7). The streamlines are generally 

$( r ,  0,) = ko( = const.) (0 < k,, < &), 
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ergodic on these surfaces but may be closed in the form of torus knots for particular 
values of I,?,. 

5. Alternative decomposition of uQ as the sum of two flows with closed 
streamlines 

We have seen in $ 2  that the general quadratic flow uQ can be decomposed into the 
sum of poloidal and toroidal parts up = U, u, = V+ W, each of which separately has 
closed streamlines. There is another type of decomposition which has the same 
property, and which is useful in analysing the STF flow. This is now described. 

Let us write the general flow (2.19) in the form 

UQ = u, (x)  + U 2 ( X ) ,  (5.1) 

where U, = a,(l-2?+2)+(U1*X)X+Sdl A X+(hyZ,pZX,UXy), (5.2) 

u, = a , ( l - 2 r 2 ) + ( a , ~ x ) x + S d 2 ~ x ,  (5.3) 

with 
(5.4) 

Note that a,.Q, = a2-Q, = 0, so that the streamline helicities of u, and u2 are 
separately zero. Note further that  we have chosen a, and 52, to be the projections of 
a and 0 along the principal direction of twist corresponding to the negative twist 
parameter p = - ( A  + v) ; this is the essence of the decomposition (5.1). 

Consider first the structure of the flow u,. Its  streamlines are given by 

dz 
(5.5) 

- - - YdY - a x  
a2 x - 0 3  +A2 a,( 1 - 2 y 2 )  +a2 y2 + 52, X -  52, z + ~ Z Z  a2 X +  52, + VZ' 

a system that is symmetric about the plane y = 0, and integrable as follows. Let 
(xo , zo )  be the solution o f t  

i.e. 

u2z0-a,+hx0 = 0, u,z,+a,+Vx, = 0, 

- u2 a, - u a ,  
u; - hu a;-hv ' 

a2 0, - han, 
xo = , 20 = 

and let x = z,+X, x = z,+Z. Then from the first and third terms of (5.5) we have 

dx - dZ - d(pX+qZ) 
u,X+hZ - U , Z + V X  - (a,p+vq)X+(hp+a,q)Z' 

We choose p and q so that 

ufl+uq = up, hp+u,q = rq ,  (5.9) 

i.e. u = fJI = a2 + (Av)i ,  p/q = @/A):, (5.10) 

or g = g  2 = u2 - (hu)i, p/q = - (u/h)$. (5.11) 

The integral curves of (5.8) follow in the form 

(v~.=x-~~zz)"~(u~x+~~z)-~~ = const. (5.12) 

t The case ui = Av requires special treatment ; the details are omitted. 
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FIQURE 6. The curves (5.12). (a )  Quasi-hyperbolic (Av > ui); (b) quasi-parabolic (Av < a;). 

FIQURE 7. Four distinct possibilities for the position of the invariant planes viX = kAk3 relative 
to the sphere r = 1. 

The form of these curves is sketched in figure 6 ;  they may be described as ‘quasi- 
hyperbolic’ or ‘quasi-parabolic’ according as u1 u2 < 0 or > 0, i.e. according as 

hv >ui or hv < ui. (5.13) 

The streamlines of u1 must then be closed curves lying on the parts of the 
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FIGURE 8. (a) Perspective view of the streamlines on the invariant planes, and ( b )  streamlines 
on one of the surfaces (5.12), when 8, = 0, = 0 and hv > ui. 

cylindrical surfaces (5.12) (now reinterpreted in three dimensions) lying inside the 
sphere r = 1. In particular, the planes viX = & hi2 are invariant planes of the flow. 
There are a number of distinct topologies according to the position of these planes 
relative to the sphere r = 1 (figure 7) .  

The case when 52, = 52, = 0 is of particular interest for the sequel. The invariant 
planes then intersect at x = z = 0. In this case, let 

6 = vix-htz, 6 = vb+h&. (5. 

Then the integral curves in the invariant plane 6 = 0 are, from (5 .5) ,  given by 

(5 .  

4) 

5 )  
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where (5.16) 

This may be solved explicitly. There are singular points at fl  = 0, y = & 1. Putting 
y = 1 + 7 and linearizing, we find that the integral curves near these points are of 
the form 

v u 2  t z a 2  = const. (5.17) 

Similarly the integral curves in the invariant plane fl  = 0 have singular points a t  
5 = 0, y = f 1, and near these points have the form 

7"' = const. (5.18) 

Both families (5.17) and (5.18) are quasi-hyperbolic if r ~ ,  r ~ ,  = a:-hv > 0, but if 
a: < Av then one family is quasi-hyperbolic and one is quasi-parabolic (which is which 
depending on the sign of a,). The form of the streamlines in this latter situation is 
sketched in figure 8. 

The main point however is that in all cases the streamlines of u, are unlinked closed 
curvest, consistent with (although not implied by) the zero streamline helicity of u,. 
Similarly, and a fortiori, the streamlines of the field u,(x) (equation (5.3)) are 
unlinked closed curves as may be seen by choosing new axes Ox'yz' with Ox' aligned 
along a,. 

We have thus achieved a decomposition of the general quadratic flow (2.19) into 
the sum of two flows u,(x)  and u 2 ( x )  each of which separately has closed unlinked 
streamlines. There is of course in general a cross-linkage of the streamlines of u1 and 
u, which is associated with the streamline helicity of the total field uQ. 

6. Adiabatic invariants for weakly perturbed closed-streamline flow 

form 
The foregoing discussion suggests that it may be useful to consider flows of the 

uQ(x)  = u,(x) + E U 2 ( X ) ,  (6.1) 

where u,(x) is an unperturbed quadratic flow having closed streamlines, uz(x)  is an 
arbitrary quadratic flow, and E < 1. For example, u,(x) may be the flow (5.2) whose 
streamlines are the intersections within the sphere r = 1 of two families of cylindrical 
surfaces obtained by integration of ( 5 4 ,  say 

I(x, z )  = const., J(y, x )  = const. (6.2) 

The invariant I(x,z) can be obtained explicitly, as in (5.12), and the invariant 
J(y,z) can be obtained in principle by then eliminating x from (5 .5)  to give an 
equation of the form dy/dz = G(y, z) ,  and by numerical integration. 

The closed streamlines are then 'labelled' by particular values of the invariants 1 
and J, and position on the streamline may be labelled by an angular coordinate 
q (0 < q < 2 ~ ) .  Adopting I ,  J,p, as new variables, the dynamical system associated 
with the flow (6.1), namely 

(6.3) - = u,(x)  + EU,(X) ,  
dx 
dt 

t Except possibly in one of the invariant planes where, if g1c2 < 0, the streamlines are 
heteroclinic lines joining the singular points at y = f I. 
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must convert to the form 

35 1 

I 

since I and J are invariant when E = 0. The first-order variation of I and J is then 
obtained by replacing F and G by their orbital averages over p, 

(for a discussion of this ‘principle of averaging’ see Arnol’d 1978 $52). Then, with 
7 = E t ,  

d z -  
- = P(I ,  J), dJ = G(I ,  J). dr  dr 

The integral curves of this second-order system are of the form 

A ( I ,  J) = const. (6.7) 
and the function A(I,  J) is an ‘adiabatic invariant ’ of the flow. Using (6.2), this may 
be expressed as a function of (2, y, z )  : 

A ( I , J )  = d(5, y, z ) ,  (6.8) 
say, and the system may be expected to evolve on the surfaces d = const. for times 
r of order unity, i.e. for t = O(e-l). 

We shall now apply this technique to the STF flow (1.7), treating a as the 
parameter which may be small or large, and we compare the predictions with the 
results of numerical integration. 

7. The stretch-twist-fold (STF) flow 
Following the notation of $$5 and 6, we may express the flow (1.7) in the form 

u = u,(x)  + au2(x), (7.1) 

where us@) = ( Z , O ,  -4, (7.2) 

U , ( X )  = ( - S X ~ ,  1 1 X 2  + 3y2 + z2 + @Z - 3, 2yz -@PJ). (7.3) 

a quasi-rigid rotation about the axis Oy, and 

This is a flow of type U+ W, in the notation of $2, with 

(7.4) 

The vector a is in the direction Oy, which is clearly one of the principal directions of 
the twist matrix Tir. Hence the decomposition (7.1) is of the type (5.1)-(5.4), and the 



352 K .  Bajer and H. K .  Moffatt 

structure of u,(x)  is precisely as described for the more general flow (5.2) with 
a =  0. The eigenvalues of qj are 

T( 1)-1 - 2[(2p)2+25]~-&?, L pa) = -$[(;p)'+25);-2p 

h = $[(/32+ l O O ) $ + f l ,  y = - ( /32+ loop, v = $[(/32+ 100)6-p] 

T(') = 0, 

and correspondingly 

so that hv = 25, and so from (5.10), (5.11), 

u 1 = 2 ,  u2 =-8, 

independent of the value of p. Since u1 v2 < 0, the streamlines on the invariant planes 
have the structure described by figure 8(a ) .  The integral (5.12) takes the form 

(7.5) 
as may be easily verified directly from the dynamical system associated with (7.3). 

I = Z(Z - &?z)~ = const., 

7.1. The case a $+ 1 
In this limit, we write (7.1) in the form 

eu = uz(x )  +€U1(X) (7.6) 

y = const., x 2 + 2  = const., (7.7) 

with e = a-l, and apply the technique of $6. The streamlines of u, are the circles 

and these provide the ' zero-order ' invariants I (  = x2 + 2,) and J( = y). The angle q~ is 
just the azimuth angle around the axis Oy, and the system (6.6) takes the form 

- -6IJ, 
dz 

dr  dr  
_ -  "- 3J2+61-3, - - 

with integral curves 

A(I ,  J) = Z ( J 2 + I - l )  or d ( x , y , z )  = ( X ~ + Z ~ ) ( Z ~ + ~ ~ + Z ~ - ~ ) .  (7.91 
As explained in $6 this is an adiabatic invariant for the flow (7.6). We notice that d 
is equal to the stream function of the Hill's vortex (2.7) (see figure 1). It is now 
evident that averaging the perturbation field eul(x) over the orbits of the main 
ingredient u, of the flow (7.6) simply eliminates the twist ingredients and leaves the 
axisymmetric (poloidal) ingredient. We should stress that in order to average the 
perturbation we first had to write the dynamical system associated with (7.6) in 'slow 
variables' I, J. One can easily check that averaging the Cartesian components of 
eul(x)  over the polar angle $ gives the wrong answer. 

The dynamical system 
dx - = u,(x) + eu,(x) 
dt 

(7.10) 

has been integrated with p = 1 and E = 1/700 = 0.00143, for a number (20) of initial 
conditions, and the Poincark sections on the plane x = z are shown in figure 9. Each 
trajectory is represented by 5000 points of section. These lie on curves which are 
indistinguishable from the streamlines of the flow (2.7), thus confirming that the 
associated adiabatic invariant (7.9) does indeed provide an excellent description of 
the behaviour when e is small. 
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FIGURE 9. Poincare sections (plane x = z )  associated with 20 trajectories of the flow (1.7) with 
a = c1 = 700 and p = 1. 5000 points of section are plotted for each streamline; these lie on closed 
curves which are indistinguishable from the curves d ( z , y , z )  = 2 x 2 ( 2 x * + y 2 -  1) = const. (equation 
(7.9) and figure 1) .  The curves that have a dotted or dashed appearance correspond to near-rational 
winding numbers on the corresponding tori. 

7.2. The case a + 1 
Here the behaviour is more subtle. The unperturbed flow has the primary invariant 
(7.5) but the second invariant cannot in general be found explicitly. When p = 0, 
however, some analytical progress can be made, and this case turns out in fact to be 
quite typical. In this case, the unperturbed dynamical system (a = p = 0) is 

dz 
= 2yz, dx dY - = - 8 ~ y ,  dt -= dt 1 1 ~ ~ + 3 y ~ + z 2 - 3 ,  - dt 

and the invariant (7.5) is 

so that the invariant planes are x = 0, z = 0. Moreover, since 

I = 2 2 4 ,  

d r  d x  3 dz 
dt dt 22 dt 

r- = x.- = 3y(r2-1) = - - (rz-I) ,  

(7.11) 

(7.12) 

(7.13) 
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4 ( X 2 + 2 ) i  

1 .o 

0.5 

0 

-0.5 

- 1.0 

FIGURE 10. Intersection of adiabatic invariant surfaces of the system (7.16) with the plane of 
section x = z. 

we find the second invariant? 
J = ( r2 - 1)/x3. (7.14) 

The integral curves of (7.11) are thus given by the intersections of the surfaces I = 
const. J = const. Taking x as a parameter on these curves, x and r are given by 

x = I/z4, r2 - 1 = x3J. (7.15) 

Now, under perturbation of the flow (7.11) by the parameter a( = E ) ,  we find that 

d J  ~ E X ( T ' - ~ )  -- 3 d J  
dt 24 25  ' 

- - -- 

1 (7.16) 

t Actually, this invariant was found (Bajer 1989) by first casting the equations in canonical 
Hamiltonian form, with 

p = y2z, q = x, t = z and H ( p , q , t )  = -p 
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FIGURE 11. Poincar6 sections (plane x = z )  of three trajectories (streamlines) of the flow (1.7) when 
a( = E )  = 0.01 and /3 = 0. Each section consists of two parts, one close to the unit circle and the 
other a pair of small nearly circular bands in the interior (compare figure 10). 

so that the adiabatic invariants are given by integrating the system (6.6) with 

S ( I ,  J )  = ( z 5 ) - U 2  ( z - ~ ) ,  1 
B(I,  J )  = 3 I J ( P )  

(7.17) 

where ( ... ) represents an average over a closed orbit (7.15) labelled by ( I ,  J )  (cf. 6.5) .  
Since cp = u(I ,  J) t  (when e = 0, see (6.4)), these are in effect time-averages on the 
orbit, e.g. - 

f 25 dt (z5/2yz) dz 

( 2 5 )  = ~ $dt  =r (7.18) 
( 1 / 2 Y Z )  dz 

Zmfn 

Evaluation of such integrals requires first determination for each ( I ,  J )  of the 
minimum and maximum values of z on the orbit, then numerical integration. When 
F(1, J ) ,  O(1, J )  are thus determined, the integral curves of (6.6) may be computed. 
Details of this procedure are given in Bajer (1989). The resulting family of adiabatic 
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FIGURE 12. Poincar6 section (plane z = z )  for a single trajectory of the STF flow with a = 0.01, 
j3 = 0. The trajectory migrates across the family of adiabatic surfaces (compare figure lo), this 
' trans-adiabatic drift ' occurring while the fluid particle passes near either side of the saddle points 
a t y = + l .  

surfaces A(I ,  J )  = const. intersects the plane of section x = z in the family of curves 
shown in figure 10. 

We compare these surfaces with the computed Poincark sections of the flow for 
/3 = 0 and 01( = E )  = 0.01 -see figure 11. Sections of three orbits are shown, each 
consisting of two parts : one close to the unit circle and the other a small circular band 
in the interior. This feature is evident also in figure 10. 

Figure 12 shows another single orbit of (6.3) with an extended integration giving 
38500 points of section. The fine structure in this figure faithfully reflects the family 
of adiabatic curves ; but what is most remarkable is the manner in which the solution 
trajectory can migrate from one adiabatic surface to another, this migration 
occurring during the relatively long time that a fluid particle spends in 
neighbourhoods of the (saddle-type) stagnation points at y = 1.  However weak the 
rotation may be, the timescale of the unperturbed flow in a sufficiently small 
neighbourhood of the stagnation points is of the same order in l/s as the timescale 
of the perturbation. When the timescales cannot be separated the averaging 
procedure leading to the equations (6.6) breaks down. 
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FIGURE 13. Development of Poinear6 section for a single trajectory as the number of points of 
section increases ; ct = 0.01, B = 1. Note the ' trans-adiabatic drift ' with apparently random steps 
from one adiabatic surface to another (compare figure 10). 



358 K .  Bajer and H .  K .  Moffatt 

FIQURE 14(a,b). For caption see p. 361. 
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FIGURE 14(c,d).  For caption see p. 361. 
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FIGURE 14(e,f). For caption see p. 361. 
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FIGURE 14. Sequence of Poincark sections each for ti single trajectory, with /?= 1 and a as 
indicated. The sequence shows the transition from the a 4 1 asymptotic behaviour to the a b 1 
asymptotic behaviour. 
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Owing to the weak rotation about the y-axis, every particle eventually crosses the 
invariant plane on which particles are rapidly swept towards one of these points and 
then the jump to a new adiabatic surface occurs. It is this phenomenon that we 
describe as trans-adiabatic drift.? The development of a Poincark section as the 
number of points of section increases (figure 13 in this case for /3 = 1 )  shows the 
progress of this trans-adiabatic drift over a long time-integration. 

7.3. Poincare‘ sections for p = 1 and 0 < a < cr;, 
Figure 14 shows an extended sequence of Poinear6 sections for the case p = 1 and for 
a = 0.01, 0.05, 0.1, 0.3, 2, 3, 4, 5,  with in each case a number of the order of 40000 
points of section being plotted. I n  this sequence we observe the transition from the 
behaviour identified above for a 4 1 towards that identified for a $ 1.  In  both limits, 
the adiabatic invariants provide a vital clue to the structure of the flow. When a is 
small, trans-adiabatic drift occurs because of the characteristic topology of the 
unperturbed flow, whereas when a is large, orbits really are constrained to narrow 
layers of chaos trapped between KAM tori. 

When a = 0.3, the adiabatic structure is not apparent from the Poincark section, 
but it can still be observed in the time-dependent evolution of that section on the 
monitor screen, as integration proceeds. This suggests that time correlations might 
reveal this structure, a possibility that we have not as yet pursued. 

When a increases to  2, the adiabatic structure is no longer observed, even in the 
time-dependent evolution of the chaotic structure; with a further increase in a, 
islands of regularity appear in the sea of chaos. For a = 4 these are already a 
dominant feature, and for a = 5, the structure characteristic of the a $ 1 limit (figure 
9) is clearly revealed. (We note that the stagnation points a t  y = 1 of the surface 
flow change from saddle to stable node as 01 increases through 3.5 and 4.5 
respectively.) 

8. Conclusions 
We have shown that the general quadratic flow in a sphere can be decomposed into 

a poloidal part of Hill’s vortex structure and a toroidal part consisting of a quasi- 
rigid rotation and a twist ingredient characterized by two positive 2arameters (the 
principal rates of twist) h and u.  The general quadratic flow is non-integrable, but can 
be expressed as the sum of two integrable flows which provide a basis for analysis by 
a technique involving adiabatic invariants associated with the perturbation of either 
flow. These adiabatic invariants define a family of surfaces within the sphere on 
which particle trajectories remain for a long time. However, we have identified a 
mechanism whereby particles may migrate from one adiabatic surface to another 
whenever the unperturbed flow has an invariant plane on which the streamlines are 
‘ quasi-parabolic ’ in character. The condition for this is essentially that the twist 
ingredient of the undisturbed flow should dominate over the poloidal ingredient 
(a: < hv in the notation of $5). 

The stretch-twist-fold (STF) flow (1.7), motivated by earlier dynamo-theory 
studies, is a superposition of two flows, one of which satisfies the above condition, 
and it has been subjected to detailed analysis and numerical experiment. A range of 

I n  a preliminary account of this work (Bajer, Moffatt & Nex 1990) we used the term ‘super- 
adiabatic’. This term is sometimes used. in a different context, to  describe invariants which are 
conserved to higher order than normal adiabatic invariants (M. Berry private communication ; 
Lichtenberg 8 Lieberman 1983, p. 458). We therefore use the term ‘trans-adiabatic’ here to  avoid 
config 
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behaviour is revealed which can be well understood in terms of the adiabatic 
invariants when the parameter a of the flow is either large or small. The topology of 
the adiabatic surfaces has an important influence on the behaviour : when a is large, 
these are nested tori, while when 01 is small, they all meet a t  stagnation points of the 
flow, so the behaviour is very different in these two cases. For values of a in the range 
1-2, the streamlines are apparently completely chaotic within the sphere. This type 
of phenomenon is now well known for certain unsteady Stokes flows in two- 
dimensions (Chaiken et al. 1986) but we believe that this is the first explicit example 
of a steady Stokes flow in a bounded region exhibiting chaotic st,reamlines. 

It is evident that the quadratic term of the Taylor expansion ( 1 . 1 )  encapsulates a 
remarkable richness of structure, which perhaps merits more attention in this purely 
fluid-mechanical context than it has hitherto received. 

This paper is dedicated to George Batchelor who has been an inspiration and a 
guide to both of us over many years and in many different ways. 

One of us (K. B.) has been supported in the course of this research by a Research 
Studentship a t  Trinity College, Cambridge, and by a Research Contract, no. EMR 
470M, with Culham Laboratory, UKAEA. 
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